β-catenin in plants and animals: common players but different pathways
نویسندگان
چکیده
INTRODUCTION A key node in number of essential cellular processes in eukaryotes, Armadillo was originally characterized in Drosophila as the component of Wingless/Wnt signal transduction pathway (NussleinVolhard and Wieschaus, 1980). β-catenin is the mammalian homolog of Armadillo playing dual role in structural and transcriptional regulation during embryonic development (Conacci-Sorrell et al., 2002). Even though initially characterized in animals, members of the Armadillo proteins are also known to exist in non-animals including slime mold (Dictyostelium discoideum) and plants (Wang et al., 1998; Barelle et al., 2006; Veses et al., 2009). The existence of Armadillo repeat family of proteins across species suggests ancient evolutionary origin and functional conservation of these proteins in multicellular organisms (Coates, 2003). The intricate role of β-catenin raises several doubts about the mechanism by which it mediates interaction with diverse partner proteins using common interface, and how this interaction influences adhesion and transcription? The ARM family proteins have been identified with multiple functional domains in more than one species. Genome-wide studies in plants have shown the existence of large number of Armadillo homologs in Physcomitrella patens, Arabidopsis and Oryza sativa (Mudgil et al., 2004; Sharma et al., 2014). One assumption is that, Armadillo family being evolutionary conserved, perform similar role in all organisms. However, the existence of multigene Armadillo family with various subfamilies indicate novel species specific functions of these proteins in plants. Several recent studies have made known the function of numerous ARM proteins in Arabidopsis and rice. Apart from their analogous role in regulation of gene expression and developmental processes, various proteins were discovered to be predominantly involved in plant stress responses. Thus, an intriguing and important question remains as in what way the similar effector proteins of Wnt pathway function and how similar canonical response is prevented or exist in plants. Recent progress in studies of ARM proteins in plants has suggested some possible answers to this question. However, the Wnt signaling mechanism regulated by ARM repeat proteins is still unknown. Regarding this, many underscoring questions are just beginning to emerge that remains to be answered.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملRe-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia
Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملThe Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer
Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...
متن کامل